DNSSEC for the Root Zone

MENOG 6 Riyadh, Saudi Arabia April 2010

Mehmet Akcin, ICANN

This design is the result of a cooperation between ICANN & VeriSign with support from the U.S. DoC NTIA

Roles and Responsibilities

ICANN

IANA Functions Operator

- Manages the Key Signing Key (KSK)
- Accepts DS records from TLD operators
- Verifies and processes request
- Sends update requests to DoC for authorization and to VeriSign for implementation

DoC NTIA

U.S. Department of Commerce
National Telecommunications and Information Administration

- Authorizes changes to the root zone
 - DS records
 - Key Signing Keys
 - ▶ DNSSEC update requests follow the same process as other changes
- Checks that ICANN has followed their agreed upon verification/processing policies and procedures

VeriSign Root Zone Maintainer

- Manages the Zone Signing Key (ZSK)
- Incorporates NTIA-authorized changes
- Signs the root zone with the ZSK
- Distributes the signed zone to the root server operators

Goals

- Deploy a signed root zone
 - Transparent processes
 - Audited procedures
 - DNSSEC deployment
 - validators, registries, registrars, name server operators
- Communicate early and often!

Anticipated Issues

DO=1

- A significant proportion of DNS clients send queries with EDNS0 and DO=I
- Some (largely unquantified, but potentially significant) population of such clients are unable to receive large responses
- Serving signed responses might break those clients

Rollback

- If we sign the root, there will be some early validator deployment
- There is the potential for some clients to break, perhaps badly enough that we need to un-sign the root (e.g., see previous slide)
- Un-signing the root will break the DNS for validators

Staged Deployment

Deploy Incrementally

- The goal is to leave the client population with some root servers not offering large responses until the impact of those large responses is better understood
- Relies upon resolvers not always choosing a single server

DURZ

- Deploy conservatively
 - It is the root zone, after all
- Prevent a community of validators from forming
 - This allows us to unsign the root zone during the deployment phase (if we have) to without collateral damage

DURZ

- "Deliberately Unvalidatable Root Zone"
- Sign RRSets with keys that are not published in the zone (but with matching keytag...)
- Publish keys in the zone which are not used, and which additionally contain advice for operators (see next slide)
- Swap in actual signing keys (which enables validation) at the end of the deployment process

DURZ

Deploy Incrementally

L	Completed on 27 January
A	Completed on 10 February
M, I	Completed on 3 March
D, K, E	Completed March 22nd
B, H, C, G, F	Being Completed this week. "April 14th"
J	May 5th

Measurement

- For those root servers that are instrumented, full packet captures and subsequent analysis around signing events
- Ongoing dialogue with operator communities to assess real-world impact of changes

Testing

- A prerequisite for this proposal is a captive test of the deployment
 - Test widely-deployed resolvers, with validation enabled and disabled, against the DURZ
 - Test with clients behind broken networks that drop large responses

Interaction with TLDs

DS Change Requests

- Approach likely to be based on existing methods for TLD managers to request changes in root zone
- Anticipate being able to accept DS requests
 I-2 months before the validatable signed root zone is in production
- Current topic of discussion within Root DNSSEC Design Team

Project Web Page

- http://www.root-dnssec.org
 - Status updates
 - Documents
 - Presentation Archive
 - Small collection of links to relevant tools
 - Contact information
 - RSS

Communication

with non-technical audiences

- Will reach the non-technical and semitechnical audiences with press releases and other means.
- PR departments with people who know how to do this will be engaged.

Communication

with technical audiences

- Reaching the technical audiences via mailing lists and other means
 - ▶ IETF DNS lists (e.g. DNSOP)
 - non-IETF DNS lists (e.g. DNS-OARC)
 - General operator lists (e.g. MENOG)
 - **)** ...

Draft Timeline

- December I, 2009
 - Root zone signed
 - Initially signed zone stays internal to ICANN and VeriSign
 - ICANN and VeriSign begin KSR processing
 - ZSK and KSK rolls
- January July 2010
 - Incremental roll out of signed root
- July 1, 2010
 - KSK rolled and trust anchor published
 - Signed root fully deployed

Deployment Status

13 April 2010

Documentation

- Requirements document posted
- High-Level Architecture, Policy and Practice Statements, Trust Anchor Publication, Deployment documents posted in draft form
- Ceremony, KSK Facility Requirements,
 Testing documents expected to be posted soon

http://www.root-dnssec.org

Testing

- Data collection testing by Root Server
 Operators complete have now done this for real
- Several KSR/SKR exchanges complete
- DURZ vs. Resolver testing complete

DURZ Roll-Out

- L,A, M, I, D, K, and E root servers are running the DURZ
- B C G F and H will complete the transition this week.
- J will have DURZ on 5 May 2010

Other zones

ARPA is now signed

Work on how to sign IN-ADDR.ARPA, IP6.ARPA is happening and reasonable progress is expected.

Thoughts?

- Feedback is extremely welcome
 - Email to rootsign@icann.org

Root DNSSEC Design Team

Joe Abley Mehmet Akcin David Blacka David Conrad Richard Lamb Matt Larson Fredrik Ljunggren Dave Knight Tomofumi Okubo Jakob Schlyter **Duane Wessels**